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Estimating the Number of Contributors to
Forensic DNA Mixtures: Does Maximum
Likelihood Perform Better Than Maximum
Allele Count?

ABSTRACT: Determining the number of contributors to a forensic DNA mixture using maximum allele count is a common practice in many
forensic laboratories. In this paper, we compare this method to a maximum likelihood estimator, previously proposed by Egeland et al., that we
extend to the cases of multiallelic loci and population subdivision. We compared both methods’ efficiency for identifying mixtures of two to five
individuals in the case of uncertainty about the population allele frequencies and partial profiles. The proportion of correctly resolved mixtures was
>90% for both estimators for two- and three-person mixtures, while likelihood maximization yielded success rates 2- to 15-fold higher for four- and
five-person mixtures. Comparable results were obtained in the cases of uncertain allele frequencies and partial profiles. Our results support the use of
the maximum likelihood estimator to report the number of contributors when dealing with complex DNA mixtures.
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Interpretation of forensic DNA mixtures is a challenging task in
forensic casework. Mixtures arise when more than one individual
contributes to the DNA stain. This is common in cases of sexual
assault where the source of DNA evidence can include the victim,
the perpetrator(s), and the consensual partner(s) of the victim.

The interpretation of DNA evidence is even more challenging
when competing hypotheses are weighted using likelihood ratios
because it is implicitly assumed that the number of contributors is
known. As misclassified DNA mixtures can lead to dramatic
effects on the result of a police investigation, several attempts have
been made to assess this problem. Weir (1), Brenner et al. (2),
Buckleton et al. (3), and Lauritzen and Mortera (4) have all sug-
gested bounds on likelihood ratios. None of these authors consid-
ered the matter of inferring the number of contributors from the
data although this is a prevalent line of questioning in court.

It is common laboratory practice to set the lower bound on the
number of contributors to the minimum required to explain the
observed set of alleles. This bound is based on the maximum allele
count throughout the analyzed loci, i.e., the locus showing the max-
imum number of alleles determines the bound. This method is
believed to be an unreliable predictor because of the effect of allele
sharing between contributors to the mixture known as the masking
effect (5,6). Setting a lower bound is obviously different from

attempting to estimate the most supported number of contributors
from the data alone. Egeland et al. (7) proposed to overcome this
issue by making explicit use of the available allele frequencies of
the target population. They suggested a likelihood-based estimator
of the number of contributors using diallelic markers when condi-
tions for Hardy–Weinberg equilibrium are met in the population.
This method was shown to perform rather well for at least 200
diallelic markers and for mixtures of two and three contributors.

DNA stains from crime scenes are usually characterized through
multiallelic short tandem repeat (STR) loci, so there is a need to
investigate which approach is the most efficient in determining the
number of individuals involved in a mixture. Moreover, several
studies have shown that longer DNA fragment lengths carry a
greater probability of lost information from allelic drop out (8),
leading the forensic expert to conclude that the DNA evidence has
partial profiles.

In this paper, we aim to (i) extend the work of Egeland et al.
(2003) to an arbitrary number of alleles per locus and to dependen-
cies between alleles because of population subdivision and (ii)
investigate through simulations the performance of two methods for
estimating the number of contributors to a DNA mixture from the
genetic data alone and irrespective of background information that
may affect this estimation: the maximum allele count and the maxi-
mum likelihood estimator.

We investigate the methods’ properties in three distinct situa-
tions: in the first situation, all contributors to the mixture belong to
the same population with known allele frequencies; in the second
situation, we take into account the effect of not knowing with cer-
tainty the allele frequencies of the contributors’ population, a situa-
tion that may arise from population subdivision; in the third
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situation, we seek to identify the effects of partial profiles on the
estimation accuracy for both the maximum allele count and the
likelihood-based estimators.

To facilitate reproducibility of our results and extension to other
situations, our method is freely available in the package forensim
for the R statistical software (9).

Methods

Extending the Likelihood Estimator to the Cases of Multiallelic
Loci and Population Subdivision

Let A be a specific locus with alleles A1,..., Ak with frequencies
p1,..., pk in a given population. Let m be the set of observed alleles
in a DNA stain from a crime scene. We are interested in estimating
the probability of observing m knowing that there are x individuals
contributing to the mixture. This is the likelihood of the data m
conditional on x, denoted: LA(x).

Example—Suppose that a crime scene stain shows alleles A1

and A2 at locus A, the forensic expert wants to determine the likeli-
hood that two contributors supply these alleles. Combining the
observed alleles into two individual genotypes yields seven distinct
pairs of possible genotypes for the two contributors: (A1A1, A2A2),
(A2A2, A1A1), (A1A1, A1A2), (A2A2, A1A2), (A1A2, A1A1), (A1A2,
A1A2), and (A1A2, A2A2).

Under the hypothesis that the contributors to the DNA stain are
not related, the estimation of each genotype proportion can be
obtained as a product of the allele frequencies using the Hardy–
Weinberg formula. This assumes the independence of alleles
between and within individuals. This simplifying hypothesis as a
means to determine the genotype proportions from allele frequen-
cies is termed the ‘‘product rule’’ (10).

The probability of observing the pair of genotypes (A1A1, A1A2),
denoted Pr(A1A1, A1A2), corresponds to the probability of observing
one homozygote for A1 and one heterozygote A1A2, which is
p2

1 · 2p1p2. By adding the probabilities for each possible genotype
pair, we finally obtain:

LAðx ¼ 2Þ ¼ 4p3
1p2þ6p2

1p2
2þ4p1p3

2

These results could be derived analytically in a simple case (one
locus and two hypothetic contributors), but the complexity of the
likelihood computation increases dramatically with the numbers of
loci and contributors; hence, there is a need for a general formula-
tion of the likelihood function. To achieve this generalization, we
follow the work of Curran et al. (11) who gave a general frame-
work for interpreting DNA mixtures that can take population sub-
division into account. In their paper, a general formula for mixture
interpretation evaluation was given in the form: Pr(E|H), where E
is the DNA evidence and H is the hypothesis under which the data
is being considered, for example, the prosecution hypothesis.

When only genetic data is considered, the evidence E is com-
posed of the set of alleles observed in the mixture, denoted C. This
set of alleles is composed of the following: (i) the set of alleles
found in the typed individuals who are known to have contributed
to the mixture, denoted T; (ii) the set of alleles found in the typed
individuals known to be noncontributors to the mixture, denoted V;
and (iii) the set of alleles carried by the unknown contributors,
denoted U. For instance, in the case of a DNA stain from a rape
case, T is the set of alleles carried by the victim, her consensual
partner(s), and potentially the suspect(s); V is the set of alleles
carried by cleared suspects; and U is the set of alleles carried by
the unknown contributors to the mixture.

The general formula of the likelihood can thus be derived from
the particular case where all contributors to the mixture are
unknown and there are no typed individuals. This corresponds to
T = V = B and C = U. Note that the equality C = U does not cor-
respond to the degenerate case evoked in (11) where unknown con-
tributors can have any genotypes in C. In our case, the x unknown
contributors’ genotypes must explain all alleles in C; thus, all possi-
ble genotypes attributable to the unknown individuals must explain
the alleles present in the mixture, and they must all be taken into
account in the likelihood calculation.

General Formulation of the Likelihood Function—Before
giving the general formulation of the likelihood function, we first
specify the notations used in this paper, following Curran et al.
(11): x: The unknown number of contributors to the DNA mixture;
c: The distinct number of alleles observed in the DNA stain; r:
The number of unconstrained alleles, r = 2x ) c; ri: The unknown
number of copies of allele Ai among the r unconstrained alleles of
the stain; ui: The unknown number of copies of allele Ai in the

stain, with
Pc

i¼1
ui ¼ 2x and ui = ri + 1; h: Wright’s FST coefficient,

which gives the probability of identity by descent of two alleles
taken at random from a subpopulation in two distinct individuals.

In our case, all contributors are unknown. Consequently, the
DNA evidence, E, is only composed of the alleles present in
the stain, C, and all other quantities defined in (11) and related to
the typed individuals, whether they are known to have contributed
to the mixture, are set to zero. The likelihood of having x individu-
als giving the alleles observed at a locus A in the case of all indi-
viduals belonging to the same subpopulation is given by the
general formula:

LAðxÞ ¼
Xr

r1¼0

Xr�r1

r2¼0

:::
Xr�r1�r2�:::�rc�2

rc�1¼0

ð2xÞ!
Qc

i¼1
ui!

Qc

i¼1

Qui�1

j¼0
½ð1� hÞpi þ jh�

Q2x�1

j¼0
½ð1� hÞ þ jh�

ð1Þ

Equation (1) takes into account the variation in the subpopulation
allele frequencies. When there is no need to consider population
subdivision, the likelihood of the data is simply obtained by setting
h to zero.

The Likelihood Estimator—The maximum likelihood estimation
of x, when a single marker A is considered, satisfies:

max
j¼1;2;3;:::

LAðx ¼ jÞ ð2Þ

When multiple loci are considered simultaneously, the likelihood
is calculated as the product of the likelihoods of each locus:

max
j¼1;2;3;:::

Y

A

LAðx ¼ jÞ ð3Þ

The result in Eq. (3) is straightforward for the case of a homoge-
neous population, that is when h = 0 in Eq. (1). When there are
allele dependencies in the general population because of subdivi-
sion, the overall loci likelihood (in the subpopulation) is still, to a
close approximation, the product of the single locus probabilities,
because the dependencies between alleles at different loci are
corrected through h (12).

In fact, the likelihood estimator defined by Eqs. (2) and (3)
extends the likelihood-based estimator derived by Egeland et al. (7)
to the case of multiallelic loci and allows population subdivision to
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be taken into account through h. Thus, the value for h must be cho-
sen according to the level of subdivision of the population. Typi-
cally, h is chosen in the interval [0,0.03] when dealing with human
populations (13).

Most forensic DNA mixtures consist of two-person mixtures
(14); thus, for the estimator to be biologically meaningful, estimates
were searched in the discrete interval [1,6]. This is a sensible upper
limit for the number of contributors that can be analyzed in
practice.

Evaluation of the Methods’ Performance

Known Allele Frequencies Case—We used a published data
set of allele frequencies in three U.S. populations (15): African-
Americans, Caucasians, and Hispanics. These populations were
characterized by 15 STR loci, of which 13 correspond to the core
CODIS loci.

Genotypes were simulated by drawing alleles independently at
their relative frequencies from each population data base. Mixtures
were then simulated by randomly drawing genotypes at each locus.
The performances of the likelihood-based estimator and maximum
allele count were compared on 1000 simulated mixtures comprising
two to five contributors.

Uncertain Allele Frequencies Case—Generally, in the case of
population subdivision, allele frequencies of the subpopulations are
not known with certainty. This is because of the difficulty of defin-
ing the subpopulation of an individual (16). In this paper, we ana-
lyze the effect of uncertainty on allele frequencies by modeling the
differences in allele frequencies between the global population and
a subpopulation through a Dirichlet model. The term ‘‘subpopula-
tion’’ means that the allele frequencies in the target population are
not known with certainty and does not imply allele dependencies
between and within loci.

The allele frequencies for a given locus in a given subpopulation
are generated as random deviates from a Dirichlet distribution
(17,18). Each allele frequency is a random variable with a parame-
ter ai = pi(1 ) h) ⁄h, where h is the FST coefficient. Denoting p0i the
frequency of allele Ai in the subpopulation, the allele frequencies
are modeled as:

p01; . . . ; p0k ! Dirichletða1; . . . ; akÞ

The global allele frequencies were taken from the African-Amer-
ican population (15).

We chose to set h = 0.03 in the variance parameter ai. This
value corresponds to the correction factor suggested by the National
Research Council (19) for dealing with highly subdivided human
populations. Because we were only interested in studying the effect
of uncertainty on the subpopulation allele frequencies, all loci were
simulated independently within the subpopulation.

We compared the results of the maximum allele count to the
likelihood-based estimator on 1000 simulated mixtures of two to
five contributors. We investigated the differences between results
when the uncorrected form of the likelihood-based estimator is used
(h = 0) and compared them to the results obtained using the cor-
rected form by setting h = 0.03.

Evaluation of the Methods’ Robustness to Partial
Profiles—We analyzed the effect of successively removing loci
while estimating the number of contributors on 1000 simulated
mixtures of two to five individuals. The markers were successively
removed according to their alleles’ expected median length (20).

This corresponds to what happens in the case of a degraded DNA
sample: Longer DNA fragments drop out first (8).

All programs used for the simulations were implemented in the
forensim package for the R statistical software, available at http://
forensim.r-forge.r-project.org/.

Results

Known Allele Frequencies Case

The accuracy of estimations decreased with the number of
contributors for both the maximum allele count and the maximum
likelihood estimators (Table 1). The probability of a correct estima-
tion was always >90% for mixtures of two or three individuals.
Maximum allele count produced better estimates for three-person
mixtures, but the efficiency of this method decreased dramatically
for complex mixtures of four or five individuals, while maximum
likelihood gave a correct classification rate ranging from 64% to
79% in the three populations.

Uncertain Allele Frequencies Case

The effect of uncertainty on allele frequencies was investigated
for the case where the real allele frequencies deviate greatly from
those used in the estimator (FST = 0.03, Table 2). Accurate esti-
mates were obtained with the maximum allele count for mixtures
with two or three contributors (success rate >90%). The percentage

TABLE 1—Percentages of correctly identified mixtures for all three studied
populations. The first column gives the true number of contributors, x. The

second and third columns give the percentages of mixtures correctly
identified by the two methods: the maximum allele count and the maximum

likelihood estimator.

x Maximum Allele Count (%) Likelihood Estimator (%)

African-Americans
2 100 100
3 99 94
4 45 79
5 5 67
Caucasians
2 100 99
3 97 92
4 34 77
5 2 64
Hispanics
2 100 100
3 98 93
4 45 79
5 2 67

TABLE 2—Percentages of correctly identified mixtures in the uncertain
allele frequencies case. The first column gives the true number of

contributors, x. The next two columns give the percentages of accurate
estimation for the maximum allele count and the maximum likelihood

methods. For the latter, two estimates are displayed corresponding to the
form used in the estimator: the uncorrected form (h = 0) and the corrected

form (h = 0.03).

x
Maximum Allele

Count (%)

Likelihood Estimator (%)

Uncorrected Form Corrected Form

2 100 99 99
3 94 95 91
4 21 56 76
5 0.7 27 60
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of correctly identified stains was lower when dealing with four or
five contributors. For instance, only 21% of five-person mixtures
were correctly identified.

The corrected (h = 0.03) and uncorrected forms (h = 0) of the
likelihood-based estimator produced similar results for mixtures of
two or three individuals. The corrected form was more efficient in
cases of a greater number of contributors: 60% of five-person mix-
tures were correctly identified, which was more than twofold the
maximum allele count success rate.

Method Robustness to Partial Profiles

The effects of partial profiles on the estimators’ accuracy are
shown in Fig. 1. Only mixtures simulated from African-American
allele frequencies are shown here in the known allele frequencies
case. Similar results were obtained for the other two populations
(Caucasians and Hispanics) as well as in the uncertain allele fre-
quencies case for all three populations (results not shown). Consis-
tent with previous results (Tables 1 and 2), the accuracy of both

methods decreased with the number of contributors. The relative
performance of both methods changed with the number of contrib-
utors in the mixture. The maximum allele count was revealed to be
more efficient for mixtures of two or three persons, while the likeli-
hood-based estimator performed better for mixtures of more than
three individuals (see Fig. 1). A 90% success rate was reached
using the maximum allele count for a two-person mixture when
exploring only two loci, while five were needed for the maximum
likelihood estimator. For three-person mixtures, the loci number
increased to 10 and 14, respectively. For complex mixtures of four
or five contributors, the success rates fell to 63% for the likeli-
hood-based estimator and to 0.042% for the maximum allele count
using all 15 loci.

Finally, to further our understanding of the aforementioned
results, we looked at the characteristics of the profiles responsible
for the biased estimations with the maximum likelihood estimator
(Tables 1 and 2, Fig. 1). We analyzed the sensitivity of the estima-
tor to allele frequencies. An illustration of our results is shown in
Fig. 2 for a three-person mixture characterized by one locus. The

FIG. 1—Percentages of correctly identified mixtures for x contributors, where x ranges from 2 to 5 in the case of partial profiles, for the maximum allele
count and the maximum likelihood methods.
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maximum allele count can only give a lower bound to the real
number of people involved in the mixture; thus, it cannot give
overestimates. In contrast, maximizing the likelihood can lead to
either underestimation or overestimation. Underestimation occurred
when there are rare alleles in the mixture, while mixtures with fre-
quent alleles also tended to be misclassified.

Discussion

We compared the efficiency of the commonly used maximum
allele count and an estimator based on likelihood maximization in
inferring the number of contributors to forensic DNA mixtures.

Globally, maximizing the likelihood did not perform better than
the maximum allele count for mixtures of two or three individuals.
When all loci were documented and all mixture contributors
belonged to the same population with known allele frequencies, the
maximum allele count gave lower misclassification rates (varying
from 1% to 3%) than the likelihood-based estimator (varying from
6% to 8%). These results corroborate previous findings for the for-
mer estimator (5).

Maximum allele count gives correct estimates for mixtures com-
prising x individuals when there are at least 2x ) 1 alleles at one
of the considered loci in the stain. While this condition is often
met in two- or three-person mixtures, it is unlikely to find as many
distinct alleles in mixtures of high order because of allele sharing
(6). For instance, five-person mixtures are unlikely to show nine
distinct alleles at any of the considered loci, even if very

polymorphic markers are used. Consequently, the maximum allele
count method, which tends to underestimate the real number of
contributors in mixtures of high order (x > 3), still gives satisfac-
tory results for two- and three-person mixtures. Maximum likeli-
hood estimator can either over- or underestimate the real number
of contributors for all mixture types.

As expected, the uncertainty of estimations increased with the
number of contributors for both methods, while four- and five-per-
son mixtures were more accurately identified by maximizing the
likelihood. This is owing to allele sharing between contributors. As
maximum allele count relies only on the number of distinct alleles,
mixtures with greater numbers of contributors have greater amounts
of allele sharing, which leads to the underestimation of the number
of contributors.

Previous studies showed that using maximum allele count in the
case of substantial allele sharing leads to biased estimates (5). The
bias is likely to increase in cases of population subdivision. Here,
we were more interested in one of the consequences of subdivision
on the likelihood-based estimator, namely, the uncertainty on allele
frequencies of the subpopulation, because the estimator explicitly
makes use of the allele frequencies. In the case of uncertain allele
frequencies, we observed that the corrected form of our estimator
performed better than the uncorrected one only for mixtures
consisting of four or five contributors. Mixtures involving two or
three individuals were more accurately classified with the uncor-
rected form of the estimator. The correction for subdivision was
thus efficient in the uncertain allele frequencies case only for com-
plex mixtures, but this might not be the case in highly subdivided
populations, where the independence of individual genotypes might
not be realized.

In the case of partial profiles, both of the estimators showed a
similar decrease in precision for two- and three-person mixtures,
while the likelihood-based estimator was clearly more robust to
partial profiles when dealing with four- and five-person mixtures.
The lack of robustness of maximum allele count is explained by
the fact that decreasing the number of loci decreases the chance of
encountering in the mixture a locus that shows enough distinct
alleles to allow a correct estimation using only the maximum allele
count. This effect is likely to be increased when dealing with com-
plex mixtures of more than three contributors.

Overall, it is difficult to specify the minimum number of loci
needed to accurately resolve a mixture because this number
depends on the tolerated error rate that relies on the forensic
expert’s experience; however, even with all 15 STR loci, five-per-
son mixtures could not be resolved satisfactorily: The maximum
allele count yielded an error rate of more than 95%, while maxi-
mizing the likelihood misclassified more than 30% of the mixtures.

The bias in estimations is due in part to profiles with multiple
masked alleles. This problem could be circumvented using quantita-
tive data given by the mixture profiles’ peak heights or areas (21).
In fact, our estimator only takes into account qualitative informa-
tion consisting of the allele types present in the stain. We assumed
that the forensic expert had already determined the alleles present
in the mixture and that there was no ambiguity during this stage of
the evidence analysis. Further work could thus include the use of
quantitative information to help in revealing masked alleles.

Most forensic laboratories use the maximum allele count
method to specify the number of contributors to mixed stains.
Complex mixtures comprising multiple masked alleles are likely
to be misclassified by this method. This issue could have dramatic
consequences especially when the number of contributors is deter-
mined solely on genetic data. This might be the case when dealing
with DNA casework. Very often no suspect is available in such

FIG. 2—Sensitivity of the maximum likelihood estimations of the number
of contributors to variations in allele frequencies for a simulated three-
person mixture. A single locus, ‘‘vWA,’’ was considered. At this locus, the
mixture included alleles ‘‘16,’’ ‘‘17,’’ ‘‘18,’’ and ‘‘19,’’ with initial allele fre-
quencies taken as 0.25, 0.24, 0.15, and 0.06 from the African American
population. We varied the frequency of the less frequent allele ‘‘19’’ from 0
to 1 (x-axis), values of the three other alleles being also varied by keeping
their relative frequencies constant. Each point on the plot represents the
estimation yielded by the maximum likelihood estimator (yaxis). Correct
estimates are obtained with the original allele frequencies (origin of the
x-axis), and when the frequency of allele ‘‘19’’ varies between 0.24 and
0.52. Underestimation of the number of contributors occurs when frequency
of allele ‘‘19’’ is under 0.24, while overestimations occur when its frequency
is greater than 0.52.
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stains. Consequently, having an estimate of the number of contrib-
utors could help investigators when new elements emerge in the
case. Therefore, it appeared to us that in case the number of con-
tributors is determined on genetic data, maximizing the likelihood
should be preferred to maximum allele count especially when
dealing with stains suspected to be mixtures of three or more
individuals.

To conclude, we would like to point out that we do not recom-
mend one method over the other. Our work is intended to provide
insight into forensic practitioners on the differences in efficiency
between the two estimators with respect to situations frequently
encountered in forensic casework, namely, uncertainty about the
population allele frequencies and partial profiles. Our methodology
is freely available in the package forensim for the R statistical soft-
ware to allow investigations in contexts not explored here.
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